

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Die Ressourcenuniversität. Seit 1765.

The basic concepts and the related abbreviations of MOSFET

Teimuraz Mchedlidze

Institut für Angewandte Physik Technische Universität Bergakademie Freiberg, Freiberg, Germany

International School and Conference on Functional Materials for Modern Technologies

ISCFMMT 2022

Batumi Shota Rustaveli State University, Batumi, Georgia October 1-7 2022

Preparation for the presentation:

"Characterization methods for FD SOI HKMG stacks"

- 1. FD SOI ?
- 2. HKMG Stack?
- 3. MOSFET, I_dV_g , V_{th} and STS (SS) ?

Question for the students: Is here somebody familiar with the above abbreviations to help me with the explanations?

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

L.R Linares and J. Yan (2013) A.S. Sedra and K.C. Smith, "Microelectronic Cirquits", 6th edition (2009) **ISCFMMT 2022**

FD SOI – fully depleted SOI

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

FD SOI – fully depleted SOI

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

FD SOI – fully depleted SOI

High-K metal gate stack

Die Ressourcenuniversität. Seit 1765.

Metal

High-k

BOX SiO₂

- A is the capacitor area
- κ is the relative dielectric constant of the material (3.9 for silicon dioxide)
- ε_0 is the permittivity of free space
- t is the thickness of the capacitor oxide insulator

- *W*, *L* are the width and the length of the transistor channel
- μ is the channel carrier mobility
 - C_{inv} is the capacitance density associated with the gate dielectric when the underlying channel is in the inverted state
 - $V_{\rm G}$ is the voltage applied to the transistor gate
 - $V_{\rm th}$ is the threshold voltage

1.2 nm SiO₂: Capacitance = $1 \times$ Leakage Current = $1 \times$

3 nm high-k+IL: Capacitance = $1.6 \times$ Leakage Current = $0.01 \times$

Question for the students: So what is the effective *k* for the right picture?

Answer: k=14

Drain

High-K metal gate stack

poly-Si

Metal-doped TiN

(V, adjustment layer)

HfO₂

SiO₂

SI

0

MOSFET and parameters

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

FET construction

DOI: 10.5772/intechopen.92818

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

FET construction

BERGAKADEMIE FREIBERG Die Ressourcenuniversität. Seit 1765.

Creating a channel

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG Die Ressourcenuniversität. Seit 1765.

Creating a channel

- If $V_G > V_t$ and $0 \le V_{DS} \le V_G V_t \equiv V_{OD}$
- V_G controls the Area of the channel
- FET acts as a variable resistor
- The conductance drain to source is

$$g_{DS} = \frac{1}{R_{DS}} = k_n \left(V_G - V_t - \frac{1}{2} V_{DS} \right)$$

• And the current drain to source is $I_D = k_n \left(V_G - V_t - \frac{1}{2} V_{DS} \right) V_{DS}$

Variable resistor

https://www.mks.com/n/mosfet-physics

What is k_n ?

Mobility

• How easy is for current carriers to move in the channel?

"High mobility"

"Low mobility"

• Less obstacles – higher mobility (μ), higher k_n

 $k_{\rm n} \propto \mu$

Capacitance

• Larger C_{OX} , more charge carriers can enter the channel for the same V_G .

 $k_{\rm n} \propto C_{\rm OX}$

 Larger W – more carriers enter the channel. Smaller L faster and "more successfully" they pass it.

$$k_{\rm n} \propto W/L$$

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

$$k_n = \mu C_{OX} \frac{W}{L}$$

So. current is simply

Units are A/V²

$$V_D = \mu C_{OX} \frac{W}{L} \left(V_G - V_t - \frac{1}{2} V_{DS} \right) V_{DS}$$

But in the next presentation...

$$I_D = u_T \mu_0 Q_i \frac{W_{CH}}{L_{CH}} \left[1 - exp\left(\frac{-V_{DS}}{u_T}\right) \right] \xrightarrow{\text{STS}} I_D = \mu_n Q_i \frac{W_{CH}}{L_{CH}} V_{DS}$$
$$Q_i (V_g) = C_{FOX} n u_T L W (e^{\frac{V_g - V_{th}}{n u_T}})$$
$$\mu_n = \frac{\mu_0}{1 + \theta_1 (Q_i / C_{FOX}) + \theta_2 (Q_i / C_{FOX})^2}$$

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

 $u_{\rm T} = k_{\rm B}T/q$, $k_{\rm B}$ - Boltzmann's constant T – temperature, q - elementary charge $\mu_{\rm n}$, μ_0 – electron and low field mobility W_{CH} , L_{CH} the gate width and length $Q_{\rm i}$ - inversion charge $V_{\rm t}$ - threshold voltage $C_{\rm FOX}$ front oxide capacitance Bias: $V_{\rm g}$ – gate, $V_{\rm DS}$ drain-source n - quality factor (n=STS_{meas}/STS_{th}), "LW" stands for Lambert W function. θ_1 , θ_2 mobility attenuation coefficients

What are all these parameters?

 $u_{\rm T} = k_{\rm B}T/q$, $k_{\rm B}$ - Boltzmann's constant T – temperature, q - elementary charge $\mu_{\rm n}$, μ_0 – electron and low field mobility W_{CH} , L_{CH} the gate width and length $Q_{\rm i}$ - inversion charge $V_{\rm t}$ - threshold voltage $C_{\rm FOX}$ front oxide capacitance *Bias:* V_{g} – gate, V_{DS} drain-source $n(\eta)$ - quality factor ($n=STS_{meas}/STS_{th}$), "LW" stands for Lambert W function. θ_1, θ_2 mobility attenuation coefficients

S. Remillard (2022), Lectures 71,72 M. Lundstrom, "Fundamentals of Nanotransistors", World Sci, (2018)

Subthreshold current

BERGAKADEMIE FREIBERG Die Ressourcenuniversität. Seit 1765.

IV for subthreshold range

$$\eta = 1 + \frac{C_{DEP}}{C_{OX}}$$

 $\eta \equiv n$

Drain-source current

Drain-source current

W A $D \qquad I_D = AQ_n v = W(qn_S D)v$ $I_{D} = \left| qvn_{bulk} \exp\left(\frac{-qV_{fb}}{nkT}\right) DW \right| \exp\left(\frac{qV_{G}}{nkT}\right) = B\exp\left(\frac{qV_{G}}{nkT}\right)$! When $V_G = V_t$ the current $I_D = 0.1(W/L) \mu A \rightarrow 0.1 \frac{W}{L} = B \exp\left(\frac{qV_t}{nkT}\right)$ $B = 0.1 \frac{W}{L} \exp\left(-\frac{qV_t}{nkT}\right) \rightarrow I_D = 0.1 \frac{W}{L} \exp\left|\frac{q(V_G - V_t)}{nkT}\right|$

Question for the students: Which voltage is absent in this nice equation?

No $V_{\rm DS}$ in the expression for $I_{\rm D}$?!

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

What happened to V_{DS}?

$$I_D = u_T \mu_0 Q_i \frac{W_{CH}}{L_{CH}} \left[1 - exp\left(\frac{-V_{DS}}{u_T}\right) \right] \qquad Q_i(V_g) = C_{FOX} \eta u_T LW(e^{\frac{V_g - V_{th}}{\eta u_T}})$$

At 300K, $u_T = k_B T/q = 25.85$ mV, the "thermal voltage".

Usually,
$$V_{DS} \gg \frac{k_B T}{q}$$
 and $exp\left(\frac{-qV_{DS}}{k_B T}\right) \approx 0$

M. Lundstrom, "Fundamentals of Nanotransistors", World Sci, (2018)

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

- There is **no continuous flow** (drift current) of electrons in the channel volume below threshold.
- Carriers flow by thermionic emission: imagine the channel as a potential barrier and a carrier crossing this barrier if it gets enough energy from the lattice at given temperature.

many ISCFN

ISCFMMT 2022

D. Veberic, arXiv:1003.1628v2 [cs.MS] 7 Jan 2018

T.A. Karatsori, et al., Sol.-St. Electron., 2015, 111, 123

25

The Lambert W(x) function is defined as the inverse function of

the solution being given by

D: [-1/e, ∞); R: [-1, ∞)

y = W(x)

y exp y = x

or shortly

 $W(x) \exp W(x) = x$

www

Figure 1: The two branches of the Lambert W function, $W_{-1}(x)$ in blue and $W_0(x)$ in red. The branching point at $(-e^{-1}, -1)$ is denoted with a green dash.

What is LW and why it appears for FD SOI?

So, what about subthreshold swing?

 $V)\eta$

 $\eta = 1$

$$I_{D} = 0.1 \frac{W}{L} \exp\left[\frac{q(V_{G} - V_{t})}{\eta kT}\right] \equiv 0.1 \frac{W}{L} \exp\left[\frac{-qV_{t}}{\eta kT}\right] \cdot \exp\left[\frac{qV_{G}}{\eta kT}\right]$$
At RT (295K):

$$\frac{V_{G}}{\left(100 \text{ mV}\right)^{*}\eta} \left(\frac{\exp\left[\frac{qV_{G}}{\eta kT}\right] = \exp\left[\frac{V_{G}}{\eta * 0.026}\right]}{\left(100 \text{ mV}\right)^{*}\eta} \left(\frac{100 \text{ mV}\right)^{*}\eta}{\left(160 \text{ mV}\right)^{*}\eta} \left(\frac{220 \text{ mV}\right)^{*}\eta}{\left(220 \text{ mV}\right)^{*}\eta} \left(\frac{220 \text{ mV}\right)^{*}\eta}{\Delta = 60 \text{ mV}}\right]$$

$$Calculate!$$

$$\ln(I_{D}) = \ln\left\{0.1 \frac{W}{L} \exp\left[\frac{q(V_{G} - W_{T})}{\eta kT}\right] + \frac{1}{\left(0.026 \text{ V}\right)^{*}}\right\}$$

$$\ln(I_{D}) = 2.3\log(I_{D})$$

$$\frac{d\log(I_{D})}{dV_{G}} = \frac{q}{2.3\eta kT} = \frac{1}{5TS}$$

At RT for every 60 mV change in V_{G} , I_{D} changes 10 times!

$$\frac{d\log(I_D)}{dV_G} \approx \frac{1}{60 \ mV \cdot \eta} \qquad STS_{TH, RT} \approx 60 \ mV$$

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

Subthreshold swing

Interface traps

J. Lienig, et al., ICCAD 20121 DOI: 10.1109/ICCAD51958.2021.9643447

Influence of interface traps on MOSFET

Summary: what was considered

ERGAKADEMIE FREIBERG

- ✓ FD SOI
- ✓ HKMG Stack
- ✓ MOSFET, I_dV_g , V_{th} and STS (SS, S)
- ✓ Carrier mobility
- ✓ Interface traps

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG

Die Ressourcenuniversität. Seit 1765.

Thank you for attention!

International School and Conference on Functional Materials for Modern Technologies

ISCEMMT 2022

Batumi Shota Rustaveli State University, Batumi, Georgia October 1-7 2022

What to read and watch:

T. Mchedlidze, IAP Bergakademie Freiberg, Germany

$\mathbf{I}_{d}\mathbf{V}_{g}$, \mathbf{V}_{th} and STS (SS)

$\mathbf{I_dV_g}$, $\mathbf{V_{th}}$ and STS (SS)

Subthreshold (STS) regime: $V_{GS} < V_{th}$

$$I_D \propto exp\left(\frac{qV_{GS}}{nkT}\right)$$

 $STS = n\left(\frac{kT}{q}\right)\ln(10)$

$$STS_{th} = \left(\frac{kT}{q}\right) \ln(10) \approx 60 \ mV|_{RT}$$