Fundamentals of Medical Imaging

Batumi Shota Rustaveli State University
Prof. Nugzar Gomidze

Fundamental interaction

Elementary Particles

Sheldon
Glashow

Abdus

Salam

Steven
Weinberg

Oscillations

Damping oscillations

Forced oscillations

Oscillation mechanism

repulsion

Distance between two atoms

Graphical representation of the relationship between the force between two atoms and the distance between them

The atoms of a substance vibrate continuously, which on the one hand is caused by the circular motion of electrons around the atom, on the other hand by the change of the distance between the atoms.

It is the distance between the atoms of a substance, the type of interaction, determine the aggregate states of the substance.

Attraction

Repulsive
Born-Meyer Function

Aggregate states

Waves

\rightarrow
$\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)$

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Elastic modulus is a property of the constituent material; stiffness is a property of a structure or component of a structure, and hence it is dependent upon various physical dimensions that describe that component.

$$
k=E \frac{S}{L}
$$

Waves types

Mechanical wave

Electromagnetic wave

A transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance.

A longitudinal wave which travels in the direction of its oscillations.

Acoustic waves

$$
I=p v
$$

$$
\begin{gathered}
L_{I}=\frac{1}{2} \ln \left(\frac{I}{I_{0}}\right) \mathrm{Np}=\log _{10}\left(\frac{I}{I_{0}}\right) \mathrm{B}=10 \log _{10}\left(\frac{I}{I_{0}}\right) \mathrm{dB}, \\
I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} \\
\frac{I}{I_{0}}=\frac{p^{2}}{p_{0}^{2}} \\
p_{0}=2 \cdot 10^{5} \mathrm{~Pa}
\end{gathered}
$$

Intensity dB	
$20-20$	Please
$20-40$	Underground quite
Bedroom	
$40-60$	Siting room
$60-80$	Street
$80-100$	Factory
$100-120$	Explosion

Acoustic waves

Bats use ultrasounds to navigate in the darkness

Ultrasound of human heart showing the four chambers and mitral and tricuspid valves.

Ultrasound of carotid artery

Sonographer doing echocardiography on a child

Electromagnetic radiation

Principles of crystallographic

Principles of crystallographic

$$
\begin{aligned}
& \boldsymbol{r}_{n}=n_{1} \boldsymbol{a}+n_{2} \boldsymbol{b}+n_{3} \boldsymbol{c} \\
& d_{h k l}=\left(\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right)^{-1 / 2} \\
& f(\boldsymbol{q})=\int \rho_{\mathrm{e}}(r) \mathrm{e}^{i q \cdot r} d V \quad \Longrightarrow \rho_{\mathrm{e}}(r)=\frac{1}{(2 \pi)^{3}} \int f(\boldsymbol{q}) \mathrm{e}^{i q \cdot r} d^{3} q \\
& \rho_{\phi}=\sum_{n=-\infty}^{\infty} K_{n} \mathrm{e}^{i n \phi} \\
& f(0)=\int \rho_{\mathrm{e}}(r) d V=Z \Longleftrightarrow \phi=0 \\
& A=A_{0} \frac{q_{e}^{2}}{m_{e} c^{2} r} \sin \chi \\
& f=\int \rho_{\mathrm{e}}(r) \mathrm{e}^{-i \phi} d V \\
& \Psi(r, t)=A \mathrm{e}^{-i(\omega t-k \cdot r)} \\
& \text { Calculation of parts difference } \\
& \text { in direct the direct lattice for } \\
& \text { rays scattered of the origin (} \mathrm{O} \text {) } \\
& \text { law } \\
& \text { molecules lies in its ability to yield information } \\
& \text { about the arrangement of atoms within the } \\
& \text { molecule } \\
& \rho_{\mathrm{e}}(r)=\frac{1}{(2 \pi)^{3}} \int f(\boldsymbol{q}) \mathrm{e}^{i q \cdot r} d^{3} q \\
& \text { and at } \mathbf{r}_{n}(\mathrm{~A}) \text {, together with the } \\
& \text { corresponding reciprocal lattice } \\
& \text { and the derivation of Bragg's }
\end{aligned}
$$

Principles of crystallographic

 Examples of the arrangement of lines (a) and planes (b) corresponding to the Miller indices of various sets of parallel lines in a two-dimensional lattice (hk in a) and various sets of parallel planes in a three-dimensional lattice (hkl in b).

$$
F_{h k l}=\left|F_{h k l}\right| e^{i \alpha(h k l)}=\frac{V}{a b c} \int_{-a / 2}^{a / 2} \int_{-b / 2}^{b / 2} \int_{-c / 2}^{c / 2} \rho(x, y, z) e^{2 \pi i(h x / a+k y / b+l z / c)} d x d y d z
$$

The application of Fourier synthesis to the determination of crystal structure is illustrated in this grossly simplified twodimensional analogue. We assume that there were only four (equally intense) diffraction spots with non-zero intensity, and the sinusoidal alternations show the Fourier components corresponding totheir Miller indices and phases. These four plots were superimposed to produce the final picture shown at the bottom. In practice, the various F ourier components would be superimposed with different exposures, because of the varying intensities of the diffraction spots, of which there would be several hundred or more

Nuclear Magnetic Resonance

The nuclear magnetic resonance technique was developed through the collective efforts of Isidor Rabi, Felix Bloch and Edward Purcell.
NMR stems from the dependence of this coupling to the surrounding environment, the energy absorption characteristics being exquisitely sensitive to the local magnetic neighbourhood. The local variations in the degree of coupling gives rise to what are known as chemical shifts, and the complexity of the observed spectra increases with increasing molecular size.

$$
\begin{gathered}
d \boldsymbol{\mu} / d t=\gamma(\boldsymbol{\mu} \times \boldsymbol{H}) \\
\boldsymbol{\mu}=\gamma \boldsymbol{L} \\
\omega=\gamma H \\
S(\omega)=\frac{A \tau_{2}}{1+\tau_{2}^{2}\left(\omega-\omega_{0}\right)^{2}}
\end{gathered}
$$

500 MHz two-dimensional NMR correlation (COSY) spectrum of Lysine in D2O. The ω_{1} and ω_{2} axes correspond to the Fourier transforms of the two pulse durations, and the prominent diagonal corresponds to resonances in the one-dimensional spectrum (shown along two orthogonal sides).

Exercise

1. Download the app "sound meter" or any other similar program on your smartphones and determine the noise level of different points of in present room.
2. Foucault's pendulum is installed in the second building of BSU as part of a student project. Determine the deflection angle of the Foucault pendulum 10 minutes after the deflection
