
 

                                                      Brownian motion 

                                           Suspension of magnetic nanoparticles 

1. Brownian motion. Langevin's theory 

              In 1827, the English botanist R. Browne, while looking 

through a microscope at plant particles immersed in liquid, 

observed that, if plant particles were small enough, they would 

continuously move chaotically in different directions.  Brownian 

motion is the random movement of particles in a fluid due to 

their collisions with other atoms or molecules of liquids. The 

trajectories of the Brownian particles have a chaotic (random) 

character in magnitude and direction (Fig. 1). 

            A. Einstein (1905) and M. Smolukhovski (1907), independently 

of each other, developed the molecular-statistical theory of Brownian 

motion and proved that the mean square value (fluctuation) of the 

displacement of a chaotically moving Brownian particle is directly 

proportional to the time of motion  

                       𝑥2̅̅ ̅ (𝑡 → ∞)~𝑡                                                                             (1) 

Formula (1) is valid for very long times. During this time, there are 

many collisions of liquid molecules with Brownian particles, and its 

trajectory should be represented by many broken sections in Fig. 1 - 

much more than shown in Fig. 1. It can be said that formula (1)  

describes the "echo" of short-term fast random processes over long 

times. 



 

                              

                             Fig. 1. Chaotic motion of a Brownian particle 

The force F(t) with which liquid molecules act on a Brownian 

particle was presented by Paul Langevin (1908) as the sum of two, 

qualitatively different, forces: 

                       F(𝑡) = 𝑓(𝑡) −  𝛾
𝑑𝑥

𝑑𝑡
                                                   (2) 

f(t) is a random force caused by unbalanced collisions of liquid 

molecules with Brownian particles (Fig. 2). In order to estimate τ, 

characteristic time of variation of the random function f(t) , the 

average distance between the liquid molecules  ℓ = 10−10m should 

be divided by the average speed of the thermal motion of the liquid 

molecules :  𝜏 = ℓ 𝜈⁄  . Here, the average speed is computed by using 

the formula:  
𝜇𝜈2

2
=

3𝑘𝑇

2
  and is equal to 𝜈 = √3𝑘𝑇 2𝜇⁄ . If we insert 

into the last formula the Boltzmann constant 𝑘 = 1,38 ∙ 10−23𝐽/𝐾, 

the room temperature 𝑇 = 300 𝐾 and the mass of the water 

molecule 𝜇𝐻2𝑂 = 3,1 ∙ 10−26𝑘𝑔 numerical values, then we get the 

characteristic time of the random force: 𝜏 = ℓ 𝜈⁄ ≈ 2 ∙ 10−13𝑠. This is 

a very short time, and during this time it is not possible to 

experimentally observe the processes taking place in the liquid. In our 

discussion, τ plays the role of the smallest time scale of the processes 

taking place in the system. That's why we consider the function f(t) as 

a random and rapidly changing function. However, the time spent in 



 

chaotic collisions of molecules is still much smaller than  τ . Due to the 

macroscopic nature of the system, a mechanical description of the 

processes taking place at these times is completely impossible. 

                                                                

Fig. 2. Random rapidly varying f(t)-force caused by unbalanced        

collisions of       fluid molecules.                

 

              𝛾
𝑑𝑥

𝑑𝑡
   is the resistance force proportional to the speed, caused 

by the viscosity of the liquid. γ - is the "wet" friction coefficient. γ  is 

proportional to the viscosity coefficient η. So the speed of the 

Brownian particle is proportional to the frictional force: 

                                              𝑣𝑥 =
𝑑𝑥

𝑑𝑡
~

1

𝛾
∙ 

The resistance force 𝛾
𝑑𝑥

𝑑𝑡
 can be considered as the hydrodynamic 

force of fluid friction. 

Langevin's presentation of the total force F(t)  as the sum of two 

forces (Fig. 3) is an important assumption and at the same time an 

interesting finding for the theory of Brownian motion. 



 

                                                

fig. 3. F(t) is the total force of the environment acting on the Brownian 

particle.  𝜏0 is the characteristic time for the slow process caused by 

viscosity. 

 

The dynamical equation of motion of a Brownian particle is: 

                                         𝑚
𝑑2𝑥

𝑑𝑡2 =  𝑓(𝑡)  −  𝛾
𝑑𝑥

𝑑𝑡
                                           (3) 

where m is the mass of the Brownian particle. Since f(t) is a random 

force, its explicit form cannot be given. Therefore, equation (3) has 

only a symbolic meaning, and it is meaningless to solve it. But we can 

write a formal solution to this equation. This procedure is nothing but 

the transformation of a differential equation into an integral equation. 

Now we will use such a formal solution to find the average speed of 

the Brownian particle  𝑣𝑥̅̅ ̅ .  

If equation (3), which is a first-order equation with respect to 𝑣𝑥 =

𝑑𝑥 𝑑𝑡⁄ , is formally integrated, we get: 

     𝑣𝑥(𝑡) = 𝑣𝑥(0)𝑒−𝛾𝑡 +
1

𝑚
∫ 𝑒−(1 𝜏0⁄ )(𝑡−𝑠)𝑡

0
𝑓(𝑠)𝑑𝑠     (4)                                                                      

where 𝜏0 = 𝑚 𝛾⁄  is the characteristic decay time of the flow velocity 

due to viscosity. To calculate the average speed of the Brownian 



 

particle 𝑣𝑥̅̅ ̅(𝑡), let's average the equation (4) over times t, which is 

many times greater than the characteristic time τ (t≫τ) of the random 

variation of the f(t) force. We did the averaging in the usual (standard) 

way: 

                               𝒜̅(𝑡) =
1

𝑡
∫ 𝒜(𝑡∗)

𝑡

0
𝑑𝑡∗ .                                                         

(5) 

Since the inegrand f(s) on the right-hand side of equation (4) is a 

rapidly changing random function, the average value of which is zero 

𝑓(𝑠)̅̅ ̅̅ ̅̅ = 0, we get the expression for the average speed: 

                                        𝑣𝑥̅̅ ̅(𝑡) = 𝑣(0)𝑒−𝑡 𝜏0⁄                                                              

(6) 

which indicates that the average velocity is decayed  in 𝜏0 time. If we 

assume that Brownian particles have a spherical shape and use the 

dependence of the coefficient of resistance γ on the coefficient of 

viscosity η  

                                                    𝛾 = 6𝜋𝑟𝜂,                                                          (7) 

where r is the radius of the particle, we finally get that the time of 

decay:  

                                                  𝜏0 =
𝑚

6𝜋𝑟𝜂
,                                                          (8) 

From which it can be seen that the time of decay of Brownian particle 

velocity is inversely proportional to viscosity. When studying the 

Brownian motion J. Perrin used particles of radius 𝑟 = 10−5 cm and 

mass 𝑚 = 10−14 g. For such particles in a water emulsion   (𝜂 =

10−2(𝑔/cm.s) using formula (8) we get 𝜏0 = 10−8sec. As one can see, 

the time 𝜏0 is much greater than the characteristic variation time τ of 

the random force f(t) (𝜏0 ≫ 𝜏). Therefore,  𝜏0 a characteristic time of 

a relatively slow process in the system is long time. Nevertheless, as 



 

we will show below, the time (1) for observing the movement of the 

Brownian particle is longer than the "big" time 𝜏0 (𝑡 ≫ 𝜏0). 

Now, based on equation (3), let's try to get a closed equation for 

mean square fluctuation of Brownian particle  𝑥2̅̅ ̅̅ . This is possible if we 

use the law of equal distribution of energy according to the degrees 

of freedom for the Brownian particle. To get this equation, we need 

to multiply equation (3) by x and perform simple transformations 

using the following formulas (identities) 

                         𝑥
𝑑2𝑥

𝑑𝑡2 =
1

2

𝑑2

𝑑𝑡2
(𝑥2) − (

𝑑𝑥

𝑑𝑡
)
2
              (#) 

                       𝑥
𝑑𝑥

𝑑𝑡
=

1

2
 
𝑑

𝑑𝑡
(𝑥2) .       

 As a result, we get 

                                 
𝑚

2

𝑑2

𝑑𝑡2
(𝑥2) − 𝑚𝑣𝑥

2 = 𝑓𝑥 −
𝛾

2

𝑑

𝑑𝑡
(𝑥2).   (9 

 From this point we  begin to introduce the elements of statistical 

theory. 

Let's average the equation (9) over time t using the formula (5). 

Suppose that the time t is many times greater than the characteristic 

time τ of the variation of random f(t) force (t≫τ). 

  Here we have to take into account that under the influence of 

f(t)-random force, x(t)-function also turns into a random function. 

Although the random variation of x(t) is caused by the f(t) function, we 

assume that these two functions are statistically independent of each 

other and that there is no correlation between them. This means that 

if we imagine the graph of Fig. 2 type for x(t), we will "see" that it will 

not repeat the shape of the function f(t) at any point in time. 

Therefore, the product of f(t) x(t) is a random function with the same 

properties as each of them. This assumption is considered valid in the 

theory of random functions, where it is proved on the basis of intuitive 

considerations. 



 

  As a result of this averaging, the quantities related to the f(t) 

force (𝑓̅ ≈ 𝑥̅ ≈ 0),  which vary rapidly in τ time,  "disappear", and only 

the quantities related to the slow 𝜏0 -  the time of decay of Brownian 

particle velocity remain (𝐹 ̅ ≠ 0). These quantities, caused by the 

viscosity of the liquid, lead to the 

slowing of the Brownian particle movement down. 

When averaging the equation (9), we deal with the correlation 

function of type ̅ 𝑓(𝑡)𝑥(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, which is the average of the product of two 

random functions. Since f(t) and x(t) are statistically independent of 

each other, as we  said above, it is possible to "separate" the 

correlation function 𝑓(𝑡)𝑥(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, which ultimately leads to its equalizing 

to zero: 

𝑓(𝑡)𝑥(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =𝑓(𝑡)̅̅ ̅̅ ̅̅  ∙ 𝑥(𝑡)̅̅ ̅̅ ̅̅  = 0,      (𝑡 ≫ 𝜏 ).      (10

 Using the extremely important properties of random functions 

expressed by formula (10), we get: 

    
𝑚

2

𝑑2

𝑑𝑡2 (𝑥2̅̅ ̅) − 𝑚𝑣𝑥
2̅̅ ̅̅ ̅̅ = −

𝛾

2

𝑑

𝑑𝑡
(𝑥2̅̅ ̅).      (11 Now in 

the equation (11) we somehow have to get rid of the term  𝑣𝑥
2̅̅ ̅. 

Using the "separation" formula (10), we got an equation that no 

longer contains random f(t) forces at large times t≫τ. At small τ-times, 

these forces have already done their "job" - under their influence, the 

Brownian particle's coordinate x(t) has also become a random 

function. Therefore, for 𝑣𝑥
2̅̅ ̅ we can use the law of equal distribution of 

energy according to the degrees of freedom: 

                                         
1

2
𝑚𝑣𝑥

2̅̅ ̅ = 
1

2
𝑘𝑇.                                 (12)

 Using equation (12) and eliminating  𝑣𝑥
2̅̅ ̅   from equation (11) , we 

finally get a closed equation with respect to  

                         
𝑚

2

𝑑2

𝑑𝑡2 (𝑥2̅̅ ̅) − 𝑚𝑘𝑇 = −
𝛾

2

𝑑

𝑑𝑡
(𝑥2̅̅ ̅).             (13)  



 

Using the law (12) of statistical physics for equilibrium macroscopic 

systems and also the correlation separation formula (10), we finally 

considered the system consisting of Brownian particles as a statistical 

object. From this point on, we abandon the usual (Cartesian) 

coordinates and introduce a new "good" variable  𝒙𝟐̅̅ ̅called the root 

mean square fluctuation. In the later stages of system evolution, it will 

play the role of a "dynamic" variable. It can be seen from equation (13) 

that the variation in time of the fluctuation resembles the variation in 

time of some hypothetical particle - the fluctuation moves like a 

particle. 

Equation (13) can provide information about the displacement 

of a Brownian particle only within its average value (i.e. - approximate, 

imprecise, truncated) and also only for large t times (asymptotic t≫τ). 

In other words, due to the complexity of the problem (the existence 

of random forces), we had to give up finding the exact solution to the 

problem and were forced to settle for finding an approximate solution 

(incomplete information). 

Now let's find the solution of equation (13). If we introduce the 

notation for the rate of change of mean square fluctuation: 

                                    
𝑑

𝑑𝑡
(𝑥2̅̅ ̅) ≡ 𝛼,                                                                   

(14)  

From (13) we get the equation: 

                                    
𝑑𝛼

𝑑𝑡
− 2𝑘𝑇 = −

𝛼

𝜏0
 .                                             (15)                                                                                       

The solution of equation (15) is 

                                    𝛼 =
2𝑘𝑇

𝛾
+ 𝑐 ∙ 𝑒𝑥𝑝(𝑡 𝜏0⁄ ) ,                                  

(16)                                                                     



 

where c is the integration constant. At long times 𝑡 ≫ 𝜏0, the second 

term in the right-hand side of (14) can be neglected, as a result of 

which we get: 

                                  𝛼 =
𝑑

𝑑𝑡
(𝑥2̅̅ ̅) =

2𝑘𝑇

𝛾
.                                                   (17) 

By integrating equation (17), we get 

                                   𝑥2 ̅̅ ̅̅ = 
2𝑘𝑇

𝛾
𝑡. 

If we use here the formula (7) for spherical Brownian particles, we 

finally get 

                             𝑥2̅̅ ̅  =
𝑡

𝑡0 
 ,               

1

𝑡0 
=

𝑘𝑇

3𝜋𝑟𝜂
.                                                        (18) 

The equations (18) show that the change in mean square fluctuation 

is proportional to time, and the rate of change 1 𝑡0⁄  is proportional to 

temperature and inversely proportional to viscosity. 

As it was said at the beginning, the result shown by formulas (18) 

was obtained by Einstein and Smolukhovsky, and experimentally It 

was checked by J. Peren (1908). If we take the square root from both 

sides of equation (18) for the s-displacement of a randomly wandering 

Brownian particle, we get 

                                 𝑠 ≡ √𝑥2 ̅̅ ̅̅ ~√𝑡 𝑡0⁄   .                                  (19) 

          According to formula (19), an important conclusion can be 

made: at long times (𝒕 ≫ 𝝉𝟎), the displacement of a particle caused 

by a random force is proportional to √𝒕 . Such a dependence on the 

time of movement can only be caused by the impact of a random 

force. A similar dependence does not exist in classical mechanics, 

which only studies motion caused by regular (non-random) forces. The 

opposite is also true: If the system moves according to the√𝒕  rule, 

then the driving force of the motion is random. 



 

          The collision of liquid molecules with Brownian particles can 

cause random translational motion and its random rotational motion 

as well. Such movement is called Brownian rotational movement 

(diffusive rotational movement) and it was investigated by I. Frankel. 

If we denote the angle of rotation of the particle around the z-axis by 

φ in the Cartesian coordinate system and perform the same 

procedures as we performed to obtain formula (18), in the case of 

Brownian rotational motion for the mean square value of the φ-angle 

and for a spherical particle with r-radius, we obtain 

                                         𝜑2̅̅̅̅  =
𝑘𝑇

4𝜋𝑟3𝜂
𝑡.                                                       

(20)                              

We get a formula similar to (20) for "free-random" rotation around x 

and y-axes. If we introduce the so-called Brownian relaxation rate 

                                         
1

𝜏𝐵
=

𝑘𝑇

3𝑉𝜂
                                          (20a) 

Where V is the volume of the Brownian particle, we get    𝜑2̅̅̅̅ = 𝑡 𝜏𝐵⁄ , 

from which it can be seen that 1 𝜏𝐵⁄  represents the propagation speed 

of the mean square fluctuation of the rotation angle. As one can see 

from (20a), the viscosity prevents the propagation of the fluctuation. 

It should be noted that, in addition to the similarities between 

translational and rotational movements, there is also an important 

difference. In particular, for translational Brownian motion √𝑥2 ̅̅ ̅̅  - the 

displacement is an unlimited quantity, while for rotational Brownian 

motion√𝜑2 ̅̅ ̅̅  - the turning angle cannot be more then π (or 2π). After 

reaching this value, it starts to increase again (from zero value) and 

therefore √𝜑2 ̅̅ ̅̅  has a periodic, "sawtooth" shape, similar to the one 

shown in (Fig. 5). It is possible to induce an even slower, directed, 

resonant motion by impecting any of its spectral components with an 

alternating magnetic field. We will discuss this issue in the 3rd part. 



 

 

 

                                               

 

                                    2. Suspension of magnetic nanoparticles.  

The elements of the transition (iron) group of the periodic 

system of elements (Fe-iron, Ni-nickel, Co-cobalt) have a spin moment 

different from zero. The atoms of these substances in a solid state 

interact with each other i through the exchange interaction 𝑈𝑒𝑥 . 

                          𝑈𝑒𝑥 = −2𝐽(𝑠1 ⃗⃗⃗⃗ ∙  𝑠2⃗⃗  ⃗)                                                                     (21) 

Here   𝑠1 ⃗⃗⃗⃗  , 𝑠2⃗⃗  ⃗  are -spin operators, J -exchange integral. If J>0, the 

exchange interaction leads to the polarization of atomic spins (the 

spins of all atoms are directed in one direction). Such a state of a solid 

body is called a ferromagnetic state. Actually, the exchange 

interaction polarizes not the spins of the whole (massive) body, but 

some of its parts, which are called domains. The dimensions of the 

domain are several nanometers. The domains contain approximately  

𝑁 ≅ 104 ÷ 105 atoms. The massive pattern of iron consists of many 

such domains, which are polarized, but chaotically directed towards 

each other. 

If we crush a massive body of iron and grind it to the size of a 

few nm, we get single-domain iron flakes - iron nanoparticles. The 

magnetic moment of such a nanoparticle is equal to ℳ = 𝑁𝜇𝐵, where  

𝜇𝐵 = 9,2 ∙ 10−24 A∙m2 - Bohr magneton. Since N is a large number, a 

nanoparticle is considered as a macroscopic object. 

A massive piece of iron has the property of magnetic anisotropy, 

which is that it is easier to magnetize in one direction than in other 

directions. This direction is called the axis of easy magnetization. 

According to phenomenological theory of magnetic anisotropy 



 

developed by L. Landau a massive iron sample has an internal 

magnetic anisotropy energy  

                                                   𝑈𝐴 ≅ 𝐴(sin 𝛽)2    , 

where β is the angle between the anisotropy axis and the magnetic 

moment. Minima of UA energy at 0 and π determine the direction of 

easy magnetization. Liquid consisting of small solid particles in 

Brownian motion suspended in it is called a suspension. If the particles 

sizes are in the range of 1÷103 nm, Brownian motion does not allow 

them to settle to the bottom. 

Suspension of magnetic nanoparticles (magnetic nanofluids) is 

used in medicine. A liquid containing magnetic nanoparticles is a 

medicine.This kind of suspension is injected into the injured area of 

the patient's muscle, and from the outside, with the help of magnets, 

they localize the drug in the injured area and prevent it from spreading 

throughout the body. 

 

      3. Effects of resonant electromagnetic field on rotational Brownian 

motion 

            If a magnetic nanoparticle is exposed to a magnetic field, then 

its total magnetic energy is: 

 𝑈(𝜃, 𝜓) = 𝐴𝑠𝑖𝑛2(𝜓 − 𝜃) − 𝑚𝐵(𝑡) cos 𝜃,                 (22) 

           A>0, π≥θ≥0, π≥ψ≥0. 

𝑈𝐴 = 𝐴𝑠𝑖𝑛2(𝜓 − 𝜃) is the energy of magnetic anisotropy, 

𝑚𝐵(𝑡) cos 𝜃  is the energy of interaction of a magnetic nanoparticle 

with a magnetic field. 

              If the internal magnetic anisotropy energy did not exist,  the 

same kind of "random-free" rotation around all three axes of 

Cartesian coordinates would take place, and the rotation around all 



 

three axes would be expressed by formula (20). And now, due to the 

presence of magnetic anisotropy, a different situation is occurred 

when there is rotation around the directed axis (ψ and θ-angles) 

perpendicular to  B(t) - magnetic field (Fig. 4) 

                                                

Fig. 4. The orientation of m-magnetic moment and n-anisotropy axis 

are plotted with respect to B(t)-magnetic induction vector. 

Here θ is the angle between the direction of the magnetic moment 

and the magnetic induction vector, ψ is the angle between the 

anisotropy axis and the direction of the magnetic field (Fig. 4), A=KVm_ 

is the anisotopy constant, m=|m|=MS Vm is the magnitude of the 

magnetic moment, K and MS are the densities of the anisotropy 

constant and the magnetic moment, 𝑉𝑚 =
𝜋

6 
𝑑𝑚

3   is the volume of the 

central magnetic sphere, dm is the "magnetic" diameter of the particle,  

𝐵(𝑡) = 𝑏𝑒−𝛾𝑡 𝑠𝑖𝑛 𝜔𝑡  -  alternating magnetic  field, b, ω and γ - 

amplitude, frequency and frequency broadening of this field, 

respectively. Anisotropy energy density for magnetite (Fe3 O4) 

nanoparticles - К = 4.8∙104 J/m3. "Magnetic" and external diameters 

are dm=7 nm (Vm=0.2 ∙10-24 m3) and d=2r =10 nm (V=0.5∙ 10-24 m3), the 

anisotropy constant is A=10-20J, the moment of inertia of a spherical 

nanoparticle is I=4∙10-36 kg m2. 

    {
𝐼𝜃̈ = −2𝐼

1

𝜏𝑠
𝜃̇ −

𝜕𝑈𝐴

𝜕𝜃
− 𝑚𝐵(𝑡) sin 𝜃 + 𝑓(𝑡),

𝐼𝜓̈ = −2𝐼
1

𝜏𝑠
𝜓̇ −

𝜕𝑈𝐴

𝜕𝜓
+ 𝑓(𝑡),

                (23)             

 



 

where  
1

𝜏𝑠
=

3𝑉

𝐼
  -   «viscous» relaxation speed, τS - is the rotational 

analogue of the time of the speed decay caused by viscosity, which we 

have noted for translational movement τ0  

                   
𝜕𝑈𝐴

𝜕𝜃
= −𝐴 sin 2(𝜓 − 𝜃) = −

𝜕𝑈𝐴

𝜕𝜓
           

- the moment of the anisotropy rotating force acting on the Brownian 

particle. 

          Magnetite is an iron oxide Fe2O3∙FeO which is widely used in 

pharmacology and medicine. 

          Taking into account the anisotropy forces, the dynamic 

equations of the rotational motion of the Brownian particle have the 

form 

{
𝜃̈ + 2

1

𝜏𝑠
𝜃̇ +

𝐴

𝐼
sin 2(𝜓 − 𝜃) +

𝑚𝐵(𝑡)

𝐼
sin 𝜃 =

𝑓(𝑡)

𝐼
,

𝜓̈ +
2

𝜏𝑠
𝜓̇ −

𝐴

𝐼
sin 2(𝜓 − 𝜃) =

𝑓(𝑡)

𝐼
.

      (24) 

 Let's introduce generalized coordinates - ξ=θ+ψ and ζ=θ-ψ. Then from 

(24) we get 

          {
𝜉̈ +

2

𝜏𝑆
𝜉̇ +

𝑚𝐵(𝑡) sin𝜃

𝐼
=

𝑓(𝑡)

𝐼
 ,

𝜁̈ +
2

𝜏𝑆
𝜁̇ +

𝐴

𝐼
sin 2𝜁 +

𝑚𝐵(𝑡) sin𝜃

𝐼
=

𝑓(𝑡)

𝐼
 .

         (24a) 

If we multiply equations (24a) by ξ and ζ, respectively, and use (#) type 

transformations, we get   

{

1

2
𝜉̈2 − |𝜉̇|

2
= −

1

𝜏𝑠
𝜉̇2 −

𝑚𝑏

𝐼
𝜉 sin 𝜃 ∙ 𝑒−𝛾𝑡 sin𝜔𝑡 +

𝜉𝑓(𝑡)

𝐼
 ,

1

2
𝜁2̈  −  [𝜁̇]

2
= −

1

𝜏𝑠
𝜁̇2 −

𝐴

𝐼
𝜁 sin 2𝜁 −

𝑚𝑏

𝐼
𝜁 sin 𝜃 ∙ 𝑒−𝛾𝑡 sin𝜔𝑡 +

𝜁𝑓(𝑡)

𝐼
 .

 

(25) 

Now if we average equations (25) according to formula (5), using  

                             
 𝑰

 𝟐
𝝃̇𝟐̅̅ ̅ =

𝒌𝑻

𝟐
,       

𝑰

𝟐
𝜻̇𝟐̅̅ ̅ =

𝒌𝑻

𝟐
 ,                                                        (26) 



 

the law of equal distribution of rotational energy according to the 

degrees of freedom (26),  and also that  

               𝝃𝒇(𝝃)̅̅ ̅̅ ̅̅ ̅ = 𝝃̅ ∙ 𝒇(𝝃)̅̅ ̅̅ ̅̅ = 𝟎,          𝒇(𝝃)̅̅ ̅̅ ̅̅ = 𝟎,             

          𝜻𝒇(𝜻)̅̅ ̅̅ ̅̅ ̅ = 𝜻̅ ∙ 𝒇(𝜻)̅̅ ̅̅ ̅̅ = 𝟎,       𝒇(𝜻)̅̅ ̅̅ ̅̅ = 𝟎,           (27) 

The properties of the separation of correlations of random functions, 

we get a system of equations 

{
𝝃𝟐̅̅ ̅̈ +

𝟐

𝝉𝒔
𝝃𝟐̅̅ ̅̇ +

𝟐𝒎𝒃

𝑰
∙ 𝝃 𝐬𝐢𝐧𝜽̅̅ ̅̅ ̅̅ ̅̅ ̅ ∙ 𝒆−𝜸𝒕 𝐬𝐢𝐧𝝎𝒕 =

𝟐𝒌𝑻

𝑰
 ,

𝜻𝟐̅̅ ̅̈ +
𝟐

𝝉𝒔
𝜻𝟐̅̅ ̅̇ +

𝑨

𝑰
𝜻 𝐬𝐢𝐧 𝟐𝜻̅̅ ̅̅ ̅̅ ̅̅ ̅̅  +

𝟐𝒎𝒃

𝑰
∙ 𝜻 𝐬𝐢𝐧𝜽̅̅ ̅̅ ̅̅ ̅̅ ̅ ∙ 𝒆−𝜸𝒕 𝐬𝐢𝐧𝝎𝒕 =

𝟐𝒌𝑻

𝑰
 .

                                                                                               

(28) 

          In the absence of anisotropy energy (A→0), the two equations 

of system (28) coincide, as expected. Therefore, in this case, it is 

possible to analyse only the first equation of (28). But since such 

materials are not found in magnetic nanoparticles, they are less 

interesting for us, and therefore we consider the case when A≠0. 

       The system of equations (28) is significantly simplified if we take 

into account that the Brownian particle spends most of the time (from 

collision to collision) in uniform-rotational motion. In this case, in the 

system of equations (28), we can ignore (inertia) forces proportional 

to angular accelerations 

                             𝜉2̅̅ ̅̈ → 0 ,      𝜁2̅̅ ̅̈ →  0                                                    (29) 

And finally we get a system of equations 

{
𝜉2̅̅ ̅̇ =

1

𝜏𝐵
(1 − 𝜀 ∙ 𝜉 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑒−𝛾𝑡 sin𝜔𝑡),

𝜁2̅̅ ̅̇ =
1

𝜏𝐵
(1 − 𝑎𝜁 sin 2 𝜁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜀 ∙ 𝜁 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑒−𝛾𝑡 sin𝜔𝑡),

 (30) 



 

 
1

𝜏𝐵
=

𝑘𝑇

3𝑉𝜂  
  is the Brownian relaxation rate (it is the inverse time of the 

diffusive rotation), 𝑎 =
𝐴

𝑘𝑇
   is the dimensionless anisotropy 

constant, 𝜀 =
𝑚𝑏 

𝑘𝑇
  is the small interaction parameter. 

           The system of equations (30), which describes the Brownian 

rotational motion (diffusive rotation) of a magnetic nanoparticle in 

suspension, is similar to equation (13), which describes Brownian 

translational motion in suspension. 

            If we introduce the dimensionless time 𝜏̃ =
𝑡

4𝜋𝜏𝐵
, then equation 

(30) takes the form 

{

𝑑𝜉2̅̅̅̅

𝑑𝜏̃
= 4𝜋(1 − 𝜀 ∙ 𝜉 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑒−𝛾 ̅𝜏̃ sin 𝜔̅ 𝜏̃),

𝑑𝜁2̅̅̅̅

𝑑𝜏̃
= 4𝜋(1 − 𝑎𝜁 sin 2 𝜁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜀 ∙ 𝜁 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑒−𝛾̅𝜏̃ sin 𝜔̅  𝜏̃).

                   

                                                                                                                                     

(31) 

where  𝜔̅ = 4𝜋𝜔𝜏𝐵   and  𝛾̅ = 4𝜋𝛾𝜏𝐵. For the magnetic moment of a 

magnetite nanoparticle - m = 10−19 J/T, for a water suspension -  =

10−3 kg/m ∙ sec, at room temperature and for a weak radio frequency 

field - b = 0.4 ∙ 10−3 T, we get: 𝜏𝐵 = 0,4 ∙ 10−6,   𝑎 = 2,5  and  𝜀 =

 10−2.   Let's take the solution of system (31) in the form of the power 

series of ε 

         𝜉2̅̅ ̅ ≈ [𝜉2̅̅ ̅]
(0)

+ 𝜀 [𝜉2̅̅ ̅]
(1)

+ ⋯ ,     

            𝜁2̅̅ ̅ ≈ [𝜁2̅̅ ̅]
(0)

+ 𝜀 [𝜁2̅̅ ̅]
(1)

+ ⋯  ,                (32)                                 

where the zero order quantities [𝜉2̅̅ ̅]
(0)

 , [𝜁2̅̅ ̅]
(0)

, are determined 

from the following equations 



 

{

𝑑[𝜉2̅̅̅̅ ]
(0)

𝑑𝜏̃
 = 4𝜋 ,

𝑑[𝜁2̅̅̅̅ ]
(0)

𝑑𝜏̃
= 4𝜋(1 − 𝑎𝜁 sin 2𝜁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (0)) ,

                 (33)                         

And the first-order corrections [𝜉2̅̅ ̅]
(1)

 and [𝜉2̅̅ ̅]
(1)

 - from the 

equations  

{

𝑑[𝜉2̅̅̅̅ ]
(1)

𝑑𝜏̃
= −4𝜋𝜉 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ (0) 𝑒−𝛾̅𝜏̃ sin 𝜔̅ 𝜏̃,

𝑑[𝜁2̅̅̅̅ ]
(1)

𝑑𝜏̃
= −4𝜋𝜁 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ (0) 𝑒−𝛾̅𝜏̃ sin 𝜔̅ 𝜏̃,

        (34)                                  

Where the line on the top of the formula and (0) denotes averaging 

with undisturbed condition. 

           The solution of the first equation of (33) is [𝜉2̅̅ ̅]
(0)

=
𝑡

𝜏𝐵
=

𝑘𝑇

3𝑉𝜂
𝑡, 

which is a rotational analogue of Einstein's formula (20). 

       Let us study the flow of fluctuations in the zero approximation of 

the perturbation theory. The 2nd equation of the system (31) on the 

right side can be represented as a product of infinite series: 

𝜁 sin 2𝜁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (0) ≈ 2[𝜁2̅̅ ̅ −
𝜁4̅̅̅̅

3!
+ ⋯ ](0)[1 −

𝜁2̅̅̅̅

2!
+

𝜁4̅̅̅̅

4!
… ](0).      

                   (35)   

If we use N. Bogolubov's ideas about "separation of correlations": 

 𝜁2𝑛̅̅ ̅̅ ̅  ≈ [[𝜁2̅̅ ̅]
(0)

]
(𝑛)

 

Then we are able to represent the left side of (35) with[𝜁2̅̅ ̅]
(0)

: 

2√𝜁2̅̅ ̅(0)
[√𝜁2̅̅ ̅ − 

√(𝜁2̅̅̅̅ )

3

3!
 + ⋯ ]

(0)

[1 −
𝜁2̅̅̅̅

2!
 +  

𝜁2̅̅̅̅ 2

4!
+ ⋯]

(0)

=

√𝜁2̅̅ ̅(0)
sin2√𝜁2̅̅ ̅(0)

 .       (36) 



 

Then, using formulas (35) and (36), we get from (33): 

    
𝑑[𝜁2̅̅̅̅ ]

(0)

𝑑𝜏̃
= 4𝜋 (1 − 𝑎√𝜁2̅̅ ̅(0)

sin2√𝜁2̅̅ ̅(0)
) .        (37)                      

 We obtained the equation (37) closed with respect to  [𝜁2̅̅ ̅]
(0)

. 

(37) is Inhomogeneous equation with respect to √𝜁2̅̅ ̅(0)
, so its 

solution[𝜁2̅̅ ̅]
(0)

  can be presented as a sum: 

                              [𝜁2̅̅ ̅]
(0)

= 𝜁2̅̅ ̅
ℎ

(0)
+ 𝜁2̅̅ ̅

𝑛ℎ

(0)
                    (38)     

       

Where     𝜁2̅̅ ̅
ℎ

(0)
 is a general solution of a homogeneous equation: 

                
𝑑𝜁2̅̅̅̅

ℎ

(0)

𝑑𝜏̃
= −4𝜋𝑎√𝜁2̅̅ ̅

ℎ

(0)
sin 2√𝜁2̅̅ ̅

ℎ

(0)
,     (39)                                      

                 

 And  𝜁2̅̅ ̅
𝑛ℎ

(0)
  - Inhomogeneous equation: 

             √𝜁2̅̅ ̅
𝑛ℎ

(0)
sin 2√𝜁2̅̅ ̅

𝑛ℎ

(0)
 = 

1

𝑎
   ,          𝑎 ≠ 0                 (40)  

           - private solution. 

            Equation (40) is a transcendental equation and therefore can 

only be solved by numerical methods. Let us introduce the 

notation√𝜁2(𝑎, 𝜏 → 0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≡ 𝜁∞ (𝑎). At room temperature, for 

magnetite nanoparticles - (a≈2.5), the solution of the transcendental 

equation (40), obtained by numerical methods, is. 𝜁∞(2,5) ≈

0,5 რად ≈ 280 . 

            The general solution of the homogeneous equation (39) is: 

                     √𝜁2̅̅ ̅
ℎ

(0)
= tan−1( 𝐶𝑒−4𝜋𝑎𝜏̃) ,                         (41)    



 

where C is the integration constant. If the initial condition of equation 

(38) is [𝜁2]̅̅ ̅̅ ̅(0)(0) = 0, then 𝐶 = − tan 𝜁∞(𝑎). So this complete 

solution  of (38) is : 

 √[𝜁2̅̅ ̅]
(0)

= − tan−1[tan 𝜁∞(𝑎)  𝑒−4𝜋𝑎𝜏̃] + 𝜁∞(𝑎) . (42)                                                                

At large times (𝜏̃ ≫ 1/4𝜋𝑎) from (42) we get:     

√[𝜁2̅̅ ̅]
(0)

(𝜏̃ → ∞) = 𝜁∞(𝑎). 

                                    

           Suppose that  𝜉2̅̅ ̅̅  and   𝜁2̅̅ ̅  follow the corresponding variables ξ 

and ζ. Since the dimensionless period of motion is π,  the fluctuation 

period of  𝜉2̅̅ ̅̅   is also  𝑇0̃ = 𝜋    

               [𝜉2̅̅ ̅]
(0)

(𝜏̃ + 𝑇0̃) = [𝜉2̅̅ ̅]
(0)

(𝜏̃),                     (43) 

 𝑇0̃ - fluctuation in time gets the maximum value [𝜉2̅̅ ̅]
(0)

(𝑇0̃) = 4𝜋2. 

Taking into account the periodicity condition (43), the solution of the 

first equation of the system (33) is: 

                      [𝜉2̅̅ ̅]
(0)

= 4𝜋(𝜏̃ − 𝜋|𝑛|),                             (44)  

 where 

    𝑛𝜋 ≤ 𝜏̃ < (𝑛 + 1)𝜋,    𝑛 = 0, ±1, ±2.⋯ . 

 The function (44) has a "sawtooth" shape (Fig. 5) 

                   

                                 Fig. 5. Dependence of fluctuation flux on time. 



 

 By expanding the function (44) into a Fourier series, the spectral 

composition of the fluctuation stream is: 

   [𝜉2̅̅ ̅]
(0)

= 4𝜋2 [
1

2
−

1

𝜋
(
sin 𝜏̃

1
+

sin2𝜏̃

2
 + ⋯+

sin𝑛𝜏̃

𝑛
+ ⋯)],                            

 (45) 

 

Its asymptotic value at long times 𝑡 >> 𝜏𝐵 is, [𝜉2]̿̿ ̿̿ ̿(0) = 2𝜋2, where 

the double line at the top of the formula denotes averaging over 

longer times than what was meant by the (5) averaging formula 

                                   𝐴(𝑡)̿̿ ̿̿ ̿̿ =
1

𝑡
∫ 𝐴(𝑥)𝑑𝑥

𝑡

0
⌋
𝑡≫𝜏𝐵 

                    (46)   

At large times 𝑡 >> 𝜏𝐵 we get  𝜉∞ ≡ √[𝜉2̿̿ ̿]
(0)

≈ √2𝜋 ≈1,4 𝜋. For 

"old" variables - 𝜃∞(𝑎) =
√2

2
𝜋 + 

1

2
𝜁∞(𝑎)  a nd 𝜓∞(𝑎) =

√2

2
𝜋 −

1

2
𝜁∞(𝑎). 

            Now let's study the resonance effect of the radio frequency 

field on the periodic motion of the fluctuation, which is present in the 

first order corrections [𝜉2̅̅ ̅]
(1)

, [𝜁2̅̅ ̅]
(1)

and are determined by the 

system of equations (34). It follows from the same system that in order 

to calculate these quantities, we  need to calculate the expressions 

𝜉 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ (0) and 𝜁 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ (0). We take into account that the main 

contribution to these terms is the resonance harmonic (𝜔̃ = 2), 

which is proportional to sin 𝜔̃ 𝜏̃ (𝜔0 =
1

4𝜋𝜏𝐵
). At the same time, we use 

the following formulas for the "separation" of average values  

[𝜉2𝑛]̅̅ ̅̅ ̅̅ ̅(0)  ≈ [[𝜉2̅̅ ̅]
(0)

]
𝑛

, [𝜉2𝑛+1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (0)  ≈ [[𝜉2̅̅ ̅]
(0)

]
𝑛

𝜉̅   ≈  0.    

Therefore,    we get: 

𝜉 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ (0)  ≈ 𝜉 sin
𝜉

2

̅̅ ̅̅ ̅̅ ̅̅ (0)

 cos
𝜁∞
2

+ 𝜉 cos
𝜉

2

̅̅ ̅̅ ̅̅ ̅̅ ̅(0)

sin
𝜁∞
2

≈ 



 

≈ 𝜉 (
𝜉

2
−

𝜉3

23.3!
+ ⋯)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(0)

cos
𝜁∞

2
+ 𝜉 (1 −

𝜉2

22.2!
+ ⋯)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (0)

sin
𝜁∞

2
≈

                                  (47) 

≈ (
1

2
[𝜉2̅̅ ̅]

(0)
−

[[𝜉2̅̅̅̅ ]
(0)

]
(2)

233!
+ ⋯) cos

𝜁∞

2
, 

𝜁 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ (0) = 0. 

          Let's say only one harmonic enters the resonance γ ≪ ω0. Since 

we are only interested in the main(𝜔 ≈ ω0)  resonant terms, we 

neglect all other multiple harmonics in the right-hand side of equation 

(34). If in the last part of transformation (47) we leave only the first 

term, in which we keep only the first resonant harmonic of (45), we 

get: 

         𝜉 sin 𝜃̅̅ ̅̅ ̅̅ ̅̅ (0)|
𝜔≈𝜔0

≈
1

2
[𝜉2]̅̅ ̅̅ ̅

𝜔0

(0)
cos

𝜁∞(𝑎)

2
≈ −2𝜋 cos

𝜁∞(𝑎)

2
sin 𝜔̃ 𝜏̃  

                        (48) 

where 𝜔̃ =
2𝜋

𝑇0̃
= 2 . 

 If we return to the dimensional quantities in equations (34) and (48), 

equations (34) takes the form: 

 

 [𝜉2̅̅ ̅]
(1)̇

=
2𝜋

𝜏𝐵
cos

𝜁∞(𝑎)

2
𝑒−𝛾𝑡 sin𝜔𝑡 sin𝜔0𝑡 

                  [𝜁2̅̅ ̅]
(1)̇

= 0                                                                           (49) 

where    𝜔0 =
1

4𝜋𝜏𝐵
  

Let's note that the contribution of magnetic anisotropy is 

included in the system of equations (49) only through the quantity  

𝜁∞(𝑎). 



 

If we leave only the resonance terms in (49) (𝜔0 ≈ 𝜔), then 

their solution  

[𝜉2̅̅ ̅]
(1)

=
𝜋

𝜏𝐵
cos

𝜁∞ (𝑎)

2
∙

1

𝛾2+∆2
[𝑒−𝛾𝑡(∆ sin ∆ 𝑡 − 𝛾 cos ∆ 𝑡) + 𝛾],                       

[𝜁2̅̅ ̅]
(1)

= 𝜁∞(𝑎) , (50) 

where 𝜔 − 𝜔0 = ∆.  In the limit 𝜏𝐵 ≪  t ≪
1

𝛾
 ,

1

Δ
   the solutions of (50) 

: 

             [𝜉2̅̅ ̅]
(1)

≈
𝜋

𝜏𝐵
cos

𝜁∞ (𝑎)

2
∙

∆2

𝛾2+∆2 𝑡 .                      (51) 

Second equation of (49) shows that at very long times (t >>𝜏𝐵 )  

𝜁 = 𝜁∞ (𝑎) the magnitude of the angle is preserved even in the 

presence of a resonant field. 

At longer times t≫1/γ, as follows from (50), the stationary 

resonance correction is: 

        < [𝜉2̅̅ ̅]
(1)

>=
𝜋

𝜏𝐵
cos

𝜁∞ (𝑎)

2
∙

 γ

𝛾2+∆2                  (52) 

where <⋯> denotes the asymptotic value of the function t≫(1 )/γ . It 

follows from this solution that the resonant field causes the rotation 

of the angles θ and ψ (Fig. 6), keeping the angle between them 

unchanged. 

                            

                                  Fig. 6. Fluctuations of θ and ψ angles 

 



 

For magnetite nanoparticles, at room temperature(𝑎 ≈ 2,5), 

cos
𝜁∞(2,5)

2
≈ 0,95 . Under exact resonance conditions (∆=0) and for 

the value of the radio frequency field width  - 𝛾 = 103 1/s, the 

stationary value of the fluctuation: 

< 𝜉2̅̅ ̅ >= [𝜉2]̿̿ ̿̿ ̿(0)+< 𝜀[𝜉2̅̅ ̅]
(1)

> ≈  2𝜋2 +
𝜋𝜀

𝛾𝜏𝐵
cos

𝜁∞ (2,5)

2
 ≈ 9𝜋2,                          

(53) 

              √⟨𝜉2̅̅ ̅⟩ ≈ 3 𝜋. 

From this, we subtract the 2π-period for ξ and get the value 𝜉̅ ≡

√⟨𝜉2̅̅ ̅⟩ ≈  𝜋   , which means the reversal of the moment. It follows 

from the equations (52) and (53) that any orientation of the magnetic 

moment can be obtained by selecting b and γ parameters. 

         The radio frequency resonant field in the time interval  𝜏0 ≪ 𝑡 ≪

1/𝛾 causes the fluctuation flow rate to increase. As can be seen from  

(51), the correction of the fluctuating flow rate under the considered 

conditions is: 

                    < [𝜉2̅̅ ̅̇]
(1)

> =
𝜋

𝜏𝐵
cos

𝜁∞

2
∙

∆2

𝛾2+∆2.                     (54) 

 As follows from (54), in the case of a monochromatic resonant field 

(γ=0), the rotational velocity of the fluctuation under the influence of 

the resonant field increases by 𝜋𝜀 cos
𝜁∞

2
≈ 3 ∙ 10−2, which is equal 

to  3% of  1 𝜏𝐵
⁄  

 

 

                                                     4. Resume 



 

As we have seen, Brownian motion in suspension is 

characterized by different time scales that satisfy the following 

conditions of the time hierarchy 𝜏 ≪ 𝜏0 ≪ 𝑡0, where 

 𝜏0 =
𝑚

6𝜋𝑟𝜂
, 𝑡0 =

3𝜋𝑟𝜂

𝑘𝑇
                                        (55) 

- for transitional Brownian motion , 

𝜏 ≪ 𝜏𝑠 ≪ 𝜏𝐵,  

Where   

               𝜏𝑆 =
𝐼

3𝑉𝜂
 , 𝜏𝐵  =

3𝑉𝜂

𝑘𝑇
                                 (56) 

for rotational Brownian motion.  

Chaos is generated during the shortest τ -time due to the impact 

of collisions caused by uncompensated forces. At this stage, Cartesian 

coordinates become useless for describing motion. The role of the 

"good" variable at this stage is played by the mean square fluctuation  

𝑥2̅̅ ̅ . In 𝜏0 time, fluctuating flows of exponential braking motion, 

caused by fluid viscosity, coexists with chaotic motion, but after 𝜏0  

time passes, it fades away and only chaotic motion remains. For the 

rate of change in time of the s-displacement of the Brownian particle 

under the conditions of chaotic motion, at times  𝑡 ≫ 𝜏0 we get 

                                         𝑠 = √𝑥2̅̅ ̅= √𝑡
𝑡0⁄ . 

Similarly, for rotational Brownian motion at  𝑡 ≫ 𝜏𝑆 times, we 

have 

                                       √𝜑2̅̅̅̅ = √𝑡
𝜏𝐵

⁄  . 

Dependence on the time of displacement from the root "t" is the main 

characteristic of chaotic motion. 



 

Brownian rotational motion becomes periodic after a longer time   𝑡 ≫

𝜏𝐵 . Frequency of this motion 𝜔0 = 1 4𝜋𝜏𝐵⁄  is in the radio frequency 

range. Under the influence of the radio-frequency electromagnetic 

field, a characteristic picture of the resonance process is obtained: 

forced rotation of the fluctuating flow and, also, an increase in the 

rotational speed. At this last stage, the current process depends only 

on the main parameters of the problem - viscosity and temperature – 

through 𝜔0 . The main characteristic of such a resonance process is: if 

the temperature changes, the resonance frequency will also change, 

and the resonance effect of the radio frequency field will disappear. 

This type of resonance is called stochastic resonance. 
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